

Human Factors in Aviation Dr. Jeff Dressel

3/12/13

Outline

- Scope of aviation operations
- How human factors affects outcomes
- Contributions of Human Factors to aviation
 - > Cockpit technologies
 - > Air Traffic Control technologies
- Closing comments

Scope of Aviation Operations

- At any given moment, on a typical day, over 5,000 aircraft are flying in US airspace
- Over 70,000 total flights each day (NATCA, 2012)

Scope of Aviation Operations

- Human operators flying the aircraft and directing their progress through the National Airspace System
 - > Promptly
 - > Efficiently
 - > SAFELY
- Maintain fatal accident rate (better than) 10-9 per flight hour

U.S. and Canadian Operators Accident Rates by Year Fatal Accidents – Worldwide Commercial Jet Fleet – 1959 Through 2011

Scope of Aviation Operations

- While the National Airspace System is extremely safe, 70% of incidents that do occur are thought to result from human factors issues
 - > Mechanical issues have experienced great declines
 - O'Hare, Wiggins, Batt, & Morrison (1994)
- Human Factors bridges the gap between the users and the systems (aircraft and air traffic control) to tailor interfaces such that errors are minimized

Specific examples

- In aviation, as in many fields, there is a trend toward increasingly tailored displays and controls with a usercentered design focus
- A vivid example is the "glass cockpit", moving away from numerous data-centric analog dials and indicators to a user-centric, fluid display of information

Cockpit Changes

DC3 cockpit

Cockpit Changes

• Airbus 380 cockpit

Navigation Displays

• Several non-intuitive displays (and any of dozens of paper maps) were needed for navigation

Navigation Displays

• Contemporary layout overlays information, provides dynamic, egocentric perspective

Images from Garmin.com

Flight Progress Strips

- Current operations utilize paper flight progress strips to coordinate certain operations
 - > Some information handwritten
 - > Physical transfer from position to position

Electronic Flight Progress Strips

- Information can be manipulated electronically (and/or handwritten)
- Transfer (and sharing) between positions electronically

Images from NavCanada.ca and Frequentis.com

Challenges with Flight Strips

- Paper flight progress strips have been designed to efficiently display information
- Modernization may not be simply "intuitive"
 - > Expert workforce proficient in their use
 - > Manual manipulation provides memory aids
 - e.g., "cocking a strip" in the strip bay
- Need to develop new technology that adds new functionality without eliminating tacit capabilities of the old system

Automation in Air Traffic Control

- · Application of Levels of Automation research
 - > e.g., Parasuraman, Sheridan, & Wickens (2000)
- Automation relieves the operator of some cognitive processing, along a continuum of contribution
- Examples
 - > Automated handoffs reduces landline communications by visually communicating a transfer of control
 - Conflict alerts identifies a potential airspace conflict for the controller to resolve
 - Proposed decision support tools for scheduling that may suggest a rescheduled release time for a flight (and facilitate that coordination)

/	
	~/
	-/
	Human Solution

Automation Issues

- As in many fields, the challenge is to find the optimal level of automation
 - > Relieve tedious, time consuming, or error-prone processing
 - > Make task challenging enough for operators to maintain vigilance
 - i.e., operator must not be "lulled to sleep" passively monitoring an automated process

1	2
C	
•	Human Solutions

Closing Thoughts

- Human performance plays a much larger role in outcomes of aviation operations (i.e., safety) than any other factor
- By employing Human Factors standards and conducting Human Factors research, we can improve safety and efficiency
- "Intuitive" solutions are often the result of an extensive research and development endeavor

Human Solutions, Inc.

- · Human Factors Program Planning
 - > Procedures Development
 - > Post-Implementation Studies
- System Reviews
 - > Mission Analysis
 - > System Requirements Review
- Design Development
 - > GUI Design
 - > Mockups and Storyboards

4	•	۰
ı	ľ)

6
Human Solution

Human Solutions, Inc.

•	Test	and	Evalu	ıation	Support
---	------	-----	-------	--------	---------

- > Early User Involvement Events
- > Computer-Human Interface Evaluation
- Human Factors Analysis
 - > Job/Task Analysis
 - > Training Analysis and Support
 - > Risk Management